Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695649

RESUMEN

Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.

2.
Mol Biol Rep ; 51(1): 527, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637351

RESUMEN

BACKGROUND: SnRK2 plays vital role in responding to adverse abiotic stimuli. The applicability of TaSnRK2.4 and TaSnRK2.9 was investigated to leverage the potential of these genes in indigenous wheat breeding programs. METHODS: Genetic diversity was assessed using pre-existing markers for TaSnRK2.4 and TaSnRK2.9. Furthermore, new markers were also developed to enhance their broader applicability. KASP markers were designed for TaSnRK2.4, while CAPS-based markers were tailored for TaSnRK2.9. RESULTS: Analysis revealed lack of polymorphism in TaSnRK2.4 among Pakistani wheat germplasm under study. To validate this finding, available gel-based markers for TaSnRK2.4 were employed, producing consistent results and offering limited potential for application in marker-assisted wheat breeding with Pakistani wheat material. For TaSnRK2.9-5A, CAPS2.9-5A-1 and CAPS2.9-5A-2 markers were designed to target SNP positions at 308 nt and 1700 nt revealing four distinct haplotypes. Association analysis highlighted the significance of Hap-5A-1 of TaSnRK2.9-5A, which exhibited association with an increased number of productive tillers (NPT), grains per spike (GPS), and reduced plant height (PH) under well-watered (WW) conditions. Moreover, it showed positive influence on NPT under WW conditions, GPS under water-limited (WL) conditions, and PH under both WW and WL conditions. High selection intensity observed for Hap-5A-1 underscores the valuable role it has played in Pakistani wheat breeding programs. Gene expression studies of TaSnRK2.9-5A revealed the involvement of this gene in response to PEG, NaCl, low temperature and ABA treatments. CONCLUSION: These findings propose that TaSnRK2.9 can be effectively employed for improving wheat through marker-assisted selection in wheat breeding efforts.


Asunto(s)
Resistencia a la Sequía , Triticum , Triticum/metabolismo , Genotipo , Fitomejoramiento , Pan , Proteínas de Plantas/genética
3.
Theor Appl Genet ; 136(12): 250, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982873

RESUMEN

KEY MESSAGE: Combined linkage analysis and association mapping identified genomic regions associated with yield and drought tolerance, providing information to assist breeding for high yield and drought tolerance in wheat. Wheat (Triticum aestivum L.) is one of the most widely grown food crops and provides adequate amounts of protein to support human health. Drought stress is the most important abiotic stress constraining yield during the flowering and grain development periods. Precise targeting of genomic regions underlying yield- and drought tolerance-responsive traits would assist in breeding programs. In this study, two water treatments (well-watered, WW, and rain-fed water stress, WS) were applied, and five yield-related agronomic traits (plant height, PH; spike length, SL; spikelet number per spike, SNPS; kernel number per spike, KNPS; thousand kernel weight, TKW) and drought response values (DRVs) were used to characterize the drought sensitivity of each accession. Association mapping was performed on an association panel of 304 accessions, and linkage analysis was applied to a doubled haploid (DH) population of 152 lines. Eleven co-localized genomic regions associated with yield traits and DRV were identified in both populations. Many previously cloned key genes were located in these regions. In particular, a TKW-associated region on chromosome 2D was identified using both association mapping and linkage analysis and a key candidate gene, TraesCS2D02G142500, was detected based on gene annotation and differences in expression levels. Exonic SNPs were analyzed by sequencing the full length of TraesCS2D02G142500 in the association panel, and a rare haplotype, Hap-2, which reduced TKW to a lesser extent than Hap-1 under drought stress, and the Hap-2 varieties presented drought-insensitive. Altogether, this study provides fundamental insights into molecular targets for high yield and drought tolerance in wheat.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Humanos , Mapeo Cromosómico , Triticum/genética , Sequías , Fitomejoramiento , Fenotipo , Genómica
4.
J Exp Bot ; 74(17): 5014-5025, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37310852

RESUMEN

E3 ubiquitin ligase genes play important roles in the regulation of plant development. They have been well studied in plants, but have not been sufficiently investigated in wheat. Here, we identified a highly expressed RING finger E3 ubiquitin ligase gene TaAIRP2-1B (ABA-insensitive RING protein 2) in wheat spike. Sequence polymorphism and association analysis showed that TaAIRP2-1B is significantly associated with spike length under various conditions. The genotype with haplotype Hap-1B-1 of TaAIRP2-1B has a longer spike than that of Hap-1B-2, and was positively selected in the process of wheat breeding in China. Moreover, the TaAIRP2-1B-overexpressing rice lines have longer panicles compared with wild-type plants. The expression levels of TaAIRP2-1B in Hap-1B-1 accessions were higher than in Hap-1B-2 accessions. Further study revealed that the expression of TaAIRP2-1B was negatively regulated by TaERF3 (ethylene-responsive factor 3) via binding to the Hap-1B-2 promoter, but not via binding of Hap-1B-1. Additionally, several candidate genes interacting with TaAIRP2-1B were obtained by screening the cDNA library of wheat in yeast cells. It was found that TaAIRP2-1B interacted with TaHIPP3 (heavy metal-associated isoprenylated protein 3) and promoted TaHIPP3 degradation. Our study demonstrates that TaAIRP2-1B controls spike length, and the haplotype Hap-1B-1 of TaAIRP2-1B is a favorable natural variation for spike length enhancement in wheat. This work also provides genetic resources and functional markers for wheat molecular breeding.


Asunto(s)
Proteínas de Plantas , Triticum , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Polimorfismo Genético , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
5.
J Integr Plant Biol ; 65(8): 1918-1936, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37158049

RESUMEN

Drought seriously impacts wheat production (Triticum aestivum L.), while the exploitation and utilization of genes for drought tolerance are insufficient. Leaf wilting is a direct reflection of drought tolerance in plants. Clade A PP2Cs are abscisic acid (ABA) co-receptors playing vital roles in the ABA signaling pathway, regulating drought response. However, the roles of other clade PP2Cs in drought tolerance, especially in wheat, remain largely unknown. Here, we identified a gain-of-function drought-induced wilting 1 (DIW1) gene from the wheat Aikang 58 mutant library by map-based cloning, which encodes a clade I protein phosphatase 2C (TaPP2C158) with enhanced protein phosphatase activity. Phenotypic analysis of overexpression and CRISPR/Cas9 mutant lines demonstrated that DIW1/TaPP2C158 is a negative regulator responsible for drought resistance. We found that TaPP2C158 directly interacts with TaSnRK1.1 and de-phosphorylates it, thus inactivating the TaSnRK1.1-TaAREB3 pathway. TaPP2C158 protein phosphatase activity is negatively correlated with ABA signaling. Association analysis suggested that C-terminal variation of TaPP2C158 changing protein phosphatase activity is highly correlated with the canopy temperature, and seedling survival rate under drought stress. Our data suggest that the favorable allele with lower phosphatase activity of TaPP2C158 has been positively selected in Chinese breeding history. This work benefits us in understanding the molecular mechanism of wheat drought tolerance, and provides elite genetic resources and molecular markers for improving wheat drought tolerance.


Asunto(s)
Sequías , Triticum , Triticum/metabolismo , Resistencia a la Sequía , Monoéster Fosfórico Hidrolasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo
6.
J Exp Bot ; 74(8): 2542-2555, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36749713

RESUMEN

Crown roots are the main components of the fibrous root system in cereal crops and play critical roles in plant adaptation; however, the molecular mechanisms underlying their formation in wheat (Triticum aestivum) have not been fully elucidated. In this study, we identified a wheat basic helix-loop-helix (bHLH) protein, TabHLH123, that interacts with the essential regulator of crown root initiation, MORE ROOT in wheat (TaMOR). TabHLH123 is expressed highly in shoot bases and roots. Ectopic expression of TabHLH123 in rice resulted in more roots compared with the wild type. TabHLH123 regulates the expression of genes controlling crown-root development and auxin metabolism, responses, and transport. In addition, we analysed the nucleotide sequence polymorphisms of TabHLH123s in the wheat genome and identified a superior haplotype, TabHLH123-6B, that is associated with high root dry weight and 1000-grain weight, and short plant height. Our study reveals the role of TabHLH123 in controlling the formation of crown roots and provides beneficial insights for molecular marker-assisted breeding in wheat.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Triticum , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
7.
Plant Physiol ; 191(2): 1344-1364, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36417260

RESUMEN

Wheat (Triticum aestivum) is particularly susceptible to water deficit at the jointing stage of its development. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) acts as a signaling hub in the response to drought stress, but whether SnRK2 helps plants cope with water deficit via other mechanisms is largely unknown. Here, we cloned and characterized TaSnRK2.10, which was induced by multiple abiotic stresses and phytohormones. Ectopic expression of TaSnRK2.10 in rice (Oryza sativa) conferred drought tolerance, manifested by multiple improved physiological indices, including increased water content, cell membrane stability, and survival rates, as well as decreased water loss and accumulation of H2O2 and malonaldehyde. TaSnRK2.10 interacted with and phosphorylated early responsive to dehydration 15 (TaERD15) and enolase 1 (TaENO1) in vivo and in vitro. TaERD15 phosphorylated by TaSnRK2.10 was prone to degradation by the 26S proteasome, thereby mitigating its negative effects on drought tolerance. Phosphorylation of TaENO1 by TaSnRK2.10 may account for the substantially increased levels of phosphoenolpyruvate (PEP), a key metabolite of primary and secondary metabolism, in TaSnRK2.10-overexpressing rice, thereby enhancing its viability under drought stress. Our results demonstrate that TaSnRK2.10 not only regulated stomatal aperture and the expression of drought-responsive genes, but also enhanced PEP supply and promoted the degradation of TaERD15, all of which enhanced drought tolerance.


Asunto(s)
Oryza , Triticum , Triticum/metabolismo , Oryza/genética , Oryza/metabolismo , Resistencia a la Sequía , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Sequías , Agua/metabolismo , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Genes (Basel) ; 15(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38254932

RESUMEN

Trichome plays an important role in heat dissipation, cold resistance, water absorption, protection of leaves from mechanical damage, and direct exposure to ultraviolet rays. It also plays an important role in the photosynthesis, transpiration, and respiration of plants. However, the genetic basis of trichome traits is not fully understood in wheat. In this study, wheat DH population (Hanxuan 10 × Lumai 14) was used to map quantitative trait loci (QTL) for trichome traits in different parts of flag leaf at 10 days after anther with growing in Zhao County, Hebei Province, and Taigu County, Shanxi Province, respectively. The results showed that trichome density (TD) was leaf center > leaf tip > leaf base and near vein > middle > edge, respectively, in both environments. The trichome length (TL) was leaf tip > leaf center > leaf base and edge > middle > near vein. Significant phenotypic positive correlations were observed between the trichome-related traits of different parts. A total of 83 QTLs for trichome-related traits were mapped onto 18 chromosomes, and each one accounted for 2.41 to 27.99% of the phenotypic variations. Two QTL hotspots were detected in two marker intervals: AX-95232910~AX-95658735 on 3A and AX-94850949~AX-109507404 on 7D. Six possible candidate genes (TraesCS3A02G406000, TraesCS3A02G414900, TraesCS3A02G440900, TraesCS7D02G145200, TraesCS7D02G149200, and TraesCS7D02G152400) for trichome-related traits of wheat leaves were screened out according to their predicted expression levels in wheat leaves. The expression of these genes may be induced by a variety of abiotic stresses. The results provide the basis for further validation and functional characterization of the candidate genes.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Tricomas/genética , Transporte Biológico , Hojas de la Planta/genética
9.
Front Plant Sci ; 13: 897623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082295

RESUMEN

Leaf rolling is an important agronomic trait in wheat (Triticum aestivum L.). Moderate leaf rolling keeps leaves upright and maintains the relatively normal photosynthesis of plants under drought stress. However, the molecular mechanism of wheat leaf rolling remains unclear. Here, we identified a candidate gene TaMYB5-3A that regulates leaf rolling by using a genome-wide association study (GWAS) in a panel of 323 wheat accessions. Phenotype analysis indicated that the leaves of tamyb5 mutants were flatter than that of the wild type under drought condition. A nucleotide variation in the TaMYB5-3A coding region resulted in a substitution of Thr to Lys, which corresponds to two alleles SNP-3A-1 and SNP-3A-2. The leaf rolling index (LRI) of the SNP-3A-1 genotype was significantly lower than that of the SNP-3A-2 genotype. In addition, TaMYB5-3A alleles were associated with canopy temperature (CT) in multiple environments. The CT of the SNP-3A-1 genotype was lower than that of the SNP-3A-2 genotype. Gene expression analysis showed that TaMYB5-3A was mainly expressed in leaves and down-regulated by PEG and ABA treatment. TaMYB5 induces TaNRL1 gene expression through the direct binding to the AC cis-acting element of the promoter of the target gene, which was validated by EMSA (electrophoretic mobility shift assay). Our results revealed a crucial molecular mechanism in wheat leaf rolling and provided the theoretical basis and a gene resource for crop breeding.

10.
Plants (Basel) ; 11(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36015380

RESUMEN

Drought stress frequently occurs, which seriously restricts the production of wheat (Triticum aestivum L.). Leaf rolling is a typical physiological phenomenon of plants during drought stress. To understand the genetic mechanism of wheat leaf rolling, we constructed an F2 segregating population by crossing the slight-rolling wheat cultivar "Aikang 58" (AK58) with the serious-rolling wheat cultivar ″Zhongmai 36″ (ZM36). A combination of bulked segregant analysis (BSA) with Wheat 660K SNP Array was used to identify molecular markers linked to leaf rolling degree. A major locus for leaf rolling degree under drought stress was detected on chromosome 7A. We named this locus LEAF ROLLING DEGREE 1 (LERD1), which was ultimately mapped to a region between 717.82 and 720.18 Mb. Twenty-one genes were predicted in this region, among which the basic helix-loop-helix (bHLH) transcription factor TraesCS7A01G543300 was considered to be the most likely candidate gene for LERD1. The TraesCS7A01G543300 is highly homologous to the Arabidopsis ICE1 family proteins ICE/SCREAM, SCREAM2 and bHLH093, which control stomatal initiation and development. Two nucleotide variation sites were detected in the promoter region of TraesCS7A01G543300 between the two wheat cultivars. Gene expression assays indicated that TraesCS7A01G543300 was higher expressed in AK58 seedlings than that of ZM36. This research discovered a candidate gene related to wheat leaf rolling under drought stress, which may be helpful for understanding the leaf rolling mechanism and molecular breeding in wheat.

11.
J Exp Bot ; 73(19): 6678-6696, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35906966

RESUMEN

Wheat is one of the world's major staple food crops, and breeding for improvement of grain yield is a priority under the scenarios of climate change and population growth. WRKY transcription factors are multifaceted regulators in plant growth, development, and responses to environmental stimuli. In this study, we identify the WRKY gene TaGSNE (Grain Size and Number Enhancer) in common wheat, and find that it has relatively high expression in leaves and roots, and is induced by multiple abiotic stresses. Eleven single-nucleotide polymorphisms were identified in TaGSNE, forming two haplotypes in multiple germplasm collections, named as TaGSNE-Hap-1 and TaGSNE-Hap-2. In a range of different environments, TaGSNE-Hap-2 was significantly associated with increases in thousand-grain weight (TGW; 3.0%) and spikelet number per spike (4.1%), as well as with deeper roots (10.1%) and increased root dry weight (8.3%) at the mid-grain-filling stage, and these were confirmed in backcross introgression populations. Furthermore, transgenic rice lines overexpressing TaGSNE had larger panicles, more grains, increased grain size, and increased grain yield relative to the wild-type control. Analysis of geographic and temporal distributions revealed that TaGSNE-Hap-2 is positively selected in China and Pakistan, and TaGSNE-Hap-1 in Europe. Our findings demonstrate that TaGSNE overcomes the trade-off between TGW/grain size and grain number, leading us to conclude that these elite haplotypes and their functional markers could be utilized in marker-assisted selection for breeding high-yielding varieties.


Asunto(s)
Factores de Transcripción , Triticum , Triticum/genética , Mapeo Cromosómico , Factores de Transcripción/genética , Fitomejoramiento , Grano Comestible/genética , Fenotipo
12.
PeerJ ; 10: e13262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419216

RESUMEN

The photosynthesis of wheat glumes makes important contributions to the yield. Stomata play a crucial role in regulating photosynthesis and transpiration in plants. However, the genetic base of wheat glume stomata is not fully understood. In this study, stomatal length (SL), stomatal width (SW), stomatal density (SD), potential conductance index (PCI) of stomata, stomatal area (SA), and stomatal relative area (SRA) were measured in different parts of wheat glumes from a doubled haploid (DH) population and their parents. Quantitative trait loci (QTLs) of these traits were anchored on a high-density genetic linkage map of the DH population. A total of 61 QTLs for stoma-related traits were mapped onto 16 chromosomes, and each one accounted for 3.63 to 19.02% of the phenotypic variations. Two QTL hotspots were detected in two marker intervals, AX-109400932∼AX-110985652 and AX-108972184∼AX-108752564, on chromosome 6A. Five possibly candidate genes (TraesCS6A02G105400, TraesCS6A02G106400, TraesCS6A02G115100, TraesCS6A02G115400, and TraesCS6A02G116200) for stoma-related traits of wheat glumes were screened out , according to their predicted expression levels in wheat glumes or spikes. The expression of these genes may be induced by a variety of abiotic stresses. These findings provide insights for cloning and functional characterization of stoma-related candidate genes in wheat glumes.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Mapeo Cromosómico , Fenotipo , Estudios de Asociación Genética
13.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216399

RESUMEN

Ubiquitination is a major type of post-translational modification of proteins in eukaryotes. The plant U-Box (PUB) E3 ligase is the smallest family in the E3 ligase superfamily, but plays a variety of essential roles in plant growth, development and response to diverse environmental stresses. Hence, PUBs are potential gene resources for developing climate-resilient crops. However, there is a lack of review of the latest advances to fully understand the powerful gene family. To bridge the gap and facilitate its use in future crop breeding, we comprehensively summarize the recent progress of the PUB family, including gene evolution, classification, biological functions, and multifarious regulatory mechanisms in plants.


Asunto(s)
Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Fitomejoramiento/métodos , Desarrollo de la Planta/fisiología , Estrés Fisiológico/fisiología , Ubiquitinación/fisiología
14.
Plant Biotechnol J ; 20(1): 168-182, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34510688

RESUMEN

Increasing grain yield has always been the primary goal of crop breeding. KLUH/CYP78A5 has been shown to affect seed size in several plant species, but the relevant molecular mechanism is still unclear and there are no reports of this gene contributing to yield. Here, we demonstrate that modified expression of TaCYP78A5 can enhance wheat grain weight and grain yield per plant by accumulating auxin. TaCYP78A5 is highly expressed in maternal tissues, including ovary and seed coat during wheat development. The constitutive overexpression of TaCYP78A5 leads to significantly increased seed size and weight but not grain yield per plant due to the strengthening of apical dominance. However, localized overexpression of TaCYP78A5 in maternal integument enhances grain weight and grain yield per plant by 4.3%-18.8% and 9.6%-14.7%, respectively, in field trials. Transcriptome and hormone metabolome analyses reveal that TaCYP78A5 participates in auxin synthesis pathway and promotes auxin accumulation and cell wall remodelling in ovary. Phenotype investigation and cytological observation show that localized overexpression of TaCYP78A5 in ovary results in delayed flowering and prolonged proliferation of maternal integument cells, which promote grain enlargement. Moreover, naturally occurring variations in the promoter of TaCYP78A5-2A contribute to thousand-grain weight (TGW) and grain yield per plant of wheat;TaCYP78A5-2A haplotype Ap-HapII with higher activity is favourable for improving grain weight and grain yield per plant and has been positively selected in wheat breeding. Then, a functional marker of TaCYP78A5 haplotype Ap-HapII is developed for marker-assisted selection in wheat grain and yield improvement.


Asunto(s)
Ácidos Indolacéticos , Triticum , Grano Comestible/genética , Ácidos Indolacéticos/metabolismo , Fenotipo , Fitomejoramiento , Semillas/genética , Triticum/metabolismo
15.
Plant Biotechnol J ; 20(5): 862-875, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34890129

RESUMEN

Optimal root system architecture is beneficial for water-fertilizer use efficiency, stress tolerance and yield improvement of crops. However, because of the complexity of root traits and difficulty in phenotyping deep roots, the study on mechanisms of root development is rarely reported in wheat (Triticum aestivum L.). In this study, we identified that the LBD (LATERAL ORGAN BOUNDARIES DOMAIN) gene TaMOR (MORE ROOT in wheat) determines wheat crown root initiation. The mor mutants exhibited less or even no crown root, dwarfism, less grain number and lodging caused by few roots. The observation of cross sections showed that crown root initiation is inhibited in the mor mutants. Molecular assays revealed that TaMOR interacts with the auxin response factor ARF5 to directly induce the expression of the auxin transporter gene PIN2 (PIN-FORMED 2) in the root base to regulate crown root initiation. In addition, a 159-bp MITE (miniature inverted-repeat transposable element) insertion causing DNA methylation and lower expression of TaMOR-B was identified in TaMOR-B promoter, which is associated with lower root dry weight and shorter plant height. The results bring new light into regulation mechanisms of crown root initiation and offer a new target for the improvement of root system architecture in wheat.


Asunto(s)
Raíces de Plantas , Triticum , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Triticum/metabolismo
16.
Front Plant Sci ; 12: 734614, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745169

RESUMEN

Wheat is one of the staple food crops. The utilization of elite genetic resources to develop resource-efficient wheat varieties is an effective approach to deal with the challenges of climate change and population growth. WRKY transcription factors (TFs) are multifaceted regulators of plant growth and development and response to environmental stress. The previous studies have shown that TaWRKY51 positively regulates the development of lateral roots, while its roles in agronomic trait development are not clear, and there is no functional marker for molecular breeding. To bridge the gap, we cloned the three members of TaWRKY51 and found they were highly expressed in the roots and flag leaves at the flowering stage and were induced by the multiple abiotic stresses and phytohormones. The highest expression level was observed in TaWRKY51-2D, followed by TaWRKY51-2A and -2B. The two haplotypes/alleles for each member were identified in the natural populations, and functional markers were developed accordingly. The association assays revealed that Hap-2A-I was an elite haplotype for the large spike, Hap-2B-II and allele-G were favorable haplotypes/alleles for long root. However, only Hap-2A-I was selected for wheat breeding in China. The results of transgenic experiments showed that the rice lines overexpressing TaWRKY51 had large panicle, high thousand-grain-weight, and more crown and lateral roots, which further confirmed the results of association analysis. In short, TaWRKY51 is a positive regulator of the root architecture and grain yield (GY) contributing traits. The elite gene resources and functional markers may be utilized in the marker-assisted selection for high-yield breeding in wheat.

17.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638606

RESUMEN

Drought has become a major threat to food security, because it affects crop growth and development. Drought tolerance is an important quantitative trait, which is regulated by hundreds of genes in crop plants. In recent decades, scientists have made considerable progress to uncover the genetic and molecular mechanisms of drought tolerance, especially in model plants. This review summarizes the evaluation criteria for drought tolerance, methods for gene mining, characterization of genes related to drought tolerance, and explores the approaches to enhance crop drought tolerance. Collectively, this review illustrates the application prospect of these genes in improving the drought tolerance breeding of crop plants.


Asunto(s)
Productos Agrícolas/genética , Productos Agrícolas/fisiología , Sequías , Genes de Plantas , Fitomejoramiento/métodos , Aclimatación/genética , Aclimatación/fisiología , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Sitios de Carácter Cuantitativo
18.
Front Plant Sci ; 12: 641087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456932

RESUMEN

Abscisic acid (ABA), one of phytohormones, plays an important regulatory role in plant growth and development. ABA receptor PYL4 (pyrabactin resistance 1-like 4) was previously detected to be involved in plant response to a variety of stresses. TaPYL4 overexpression could enhance wheat (Triticum aestivum) drought resistance. In order to further investigate TaPYL4's role in regulating development of other major agronomic traits in wheat, genes of TaPYL4-2A, TaPYL4-2B, and TaPYL4-2D were cloned from wheat, respectively. Polymorphism analysis on TaPYL4 sequences revealed that encoding regions of the three genes were highly conserved, without any SNP (single nucleotide polymorphism) presence. However, nine SNPs and four SNPs were identified in the promoter regions of TaPYL4-2A and TaPYL4-2B, respectively. Functional molecular markers were developed based on these polymorphisms, which were then used to scan a natural population of 323 common wheat accessions for correlation analysis between genotype and the target phenotypic traits. Both TaPYL4-2A and TaPYL4-2B markers were significantly correlated with plant growth-related traits under multiple environments (well-watered, drought and heat stress treatments). The additive effects of TaPYL4-2A and TaPYL4-2B were verified by the combinational haplotype (Hap-AB1∼Hap-AB4) effects determined from field data. Cis-acting elements were analyzed in the promoters of TaPYL4-2A and TaPYL4-2B, showing that a TGA-element bound by ARFs (auxin response factors) existed only in Hap-2A-1 of TaPYL4-2A. Gene expression assays indicated that TaPYL4-2A was constitutively expressed in various tissues, with higher expression in Hap-2A-1 genotypes than in Hap-2A-2 materials. Notably, TaARF4 could act as TaPYL4-2A transcription activator in Hap-2A-1 materials, but not in Hap-2A-2 genotypes. Analysis of geographic distribution and temporal frequency of haplotypes indicated that Hap-AB1 was positively selected in wheat breeding in China. Therefore, TaPYL4-2A and TaPYL4-2B could be a valuable target gene in wheat genetic improvement to develop the ideal plant architecture.

19.
J Exp Bot ; 72(20): 6977-6989, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34328188

RESUMEN

The root is the main organ for water and nutrient uptake and sensing environmental stimuli in the soil. The optimization of root system architecture contributes to stress tolerance and yield improvement. ERF (ETHYLENE RESPONSIVE FACTOR) is one of the plant-specific transcription factor families associated with various developmental processes and stress tolerance. We cloned a novel ERF transcription factor gene TaSRL1 (SHORT ROOT LENGTH 1) from wheat (Triticum aestivum) which is mainly expressed in root. Ectopic expression of TaSRL1 in rice resulted in short root length and plant height. TaSRL1 regulated expression of genes related to auxin synthesis, transport, and signaling. Further studies revealed that TaSRL1 induced expression of the auxin transport gene TaPIN2 by directly binding to its promoter, while the interaction of TaSRL1 and TaTIFY9 repressed TaPIN2 expression. Sequence polymorphisms and association analysis showed that TaSRL1-4A was associated with root depth and angle, plant height, and 1000-grain weight of wheat. The haplotype Hap-4A-2 with shallow roots, short plant height, and high 1000-grain weight has been positively selected in the Chinese wheat breeding process. We demonstrated that TaSRL1 functions as a direct regulator of TaPIN2 in the auxin-dependent pathway, and integrates auxin and jasmonate signaling by interacting with TaTIFY9 to repress root growth. Furthermore, the molecular marker of TaSRL1-4A is valuable for the improvement of the root system, plant architecture, and yield in the wheat breeding process.


Asunto(s)
Ácidos Indolacéticos , Triticum , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Triticum/genética , Triticum/metabolismo
20.
Front Genet ; 12: 684702, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178041

RESUMEN

High-throughput genotyping for functional markers offers an excellent opportunity to effectively practice marker-assisted selection (MAS) while breeding cultivars. We developed kompetitive allele-specific PCR (KASP) assays for genes conferring drought tolerance in common wheat (Triticum aestivum L.). In total, 11 KASP assays developed in this study and five already reported assays were used for their application in wheat breeding. We investigated alleles at 16 loci associated with drought tolerance among 153 Pakistani hexaploid wheat cultivars released during 1953-2016; 28 diploid wheat accessions (16 for AA and 12 for BB) and 19 tetraploid wheat (AABB) were used to study the evolutionary history of the studied genes. Superior allelic variations of the studied genes were significantly associated with higher grain yield. Favored haplotypes of TaSnRK2.3-1A, TaSnRK2.3-1B, TaSnRK2.9-5A, TaSAP-7B, and TaLTPs-1A predominated in Pakistani wheat germplasm indicating unconscious pyramiding and selection pressure on favorable haplotypes during selection breeding. TaSnRK2.8-5A, TaDreb-B1, 1-feh w3, TaPPH-7A, TaMOC-7A, and TaPARG-2A had moderate to low frequencies of favorable haplotype among Pakistani wheat germplasm pointing toward introgression of favorable haplotypes by deploying functional markers in marker-assisted breeding. The KASP assays were compared with gel-based markers for reliability and phenotypically validated among 62 Pakistani wheat cultivars. Association analyses showed that the favorable allelic variations were significantly associated with grain yield-contributing traits. The developed molecular marker toolkit of the genes can be instrumental for the wheat breeding in Pakistan.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...